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Abstract
We present the necessary and sufficient conditions for linearizability of the
planar complex system ẋ = x + P(x, y), ẏ = −y + Q(x, y), where P and Q
are homogeneous polynomials of degree 5. Using these conditions, we also
give the complete solution for the isochronicity of real systems in the form of
linear oscillator perturbed by fifth degree homogeneous polynomials.

PACS numbers: 02.60.Lj, 02.70.−c
Mathematics Subject Classification: 34C25, 34C15

1. Introduction

Consider a planar autonomous analytical differential system in the form of a linear centre
perturbed by higher order terms, that is,

u̇ = −v +
∞∑

i+j=2

αiju
ivj = −v + U(u, v), v̇ = u +

∞∑
i+j=2

βiju
ivj = u + V (u, v), (1)

where U and V are real analytic functions whose series expansions in a neighbourhood of the
origin start with terms of the second degree or higher. Conversion to polar coordinates shows
that near the origin either all non-stationary trajectories of (1) are ovals (in which case the
origin is called a centre) or they are all spirals (in which case the origin is called a focus). If all
solutions near u = 0, v = 0 are periodic (that is, the origin is a centre), the problem then arises
to determine whether the period of oscillations is constant for all solutions near the origin. A
centre with such property is called the isochronous centre. It follows from a result of Poincaré
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and Lyapunov that the centre of (1) is isochronous if and only if it is linearizable, that is,
if there exists an analytic transformation X = u +

∑∞
i+j=2 diju

ivj , Y = v +
∑∞

i+j=2 siju
ivj ,

which brings (1) into the linear system Ẋ = −Y, Ẏ = X.
Although the study of isochronous oscillations goes back at least to Huygens who

investigated the motion of a cycloidal pendulum, at present the problem is of renewed
interest. Starting from the 1960s many studies have been devoted to the investigation of
the isochronicity and linearizability problems for various subfamilies of system (1). In 1964,
Loud [16] classified isochronous centres of system (1) with U and V being homogeneous
polynomials of degree 2, and in 1969, Pleshkan [19] found all isochronous centres in the
family (1), where U and V are homogeneous polynomials of degree 3.

However, the classifications of isochronous centres in the form of linear centre perturbed
by homogeneous polynomials of the fourth and fifth degrees turned out to be much more
difficult. Up to now only partial results have been obtained. In particular, Chavarriga, Giné
and Garcı́a found isochronous centres for time-reversible systems (1) in the case of perturbation
of the fourth and fifth degrees [4, 5] (by definition, system (1) is time reversible if it is invariant
under reflection with respect to a line passing through the origin and a change in the direction
of time).

As we have mentioned above, the problem of isochronicity is equivalent to the problem
of linearizability. To study the linearizability, it is convenient to introduce a complex structure
on the phase plane (u, v) by setting x = u + iv. Then we obtain from system (1) the equation

dx

dt
= P̃ (x, x̄). (2)

Adjoining to the latter equation its complex conjugate we have the system

dx

dt
= P̃ (x, x̄),

dx̄

dt
= P̃ (x, x̄).

Let us consider x̄ as a new variable y and P̃ as a new function Q. Then, in the case when U
and V are polynomials of degree n, from the latter system we obtain a system of two complex
differential equations of the form

dx

dt
= i


x −

n−1∑
p+q=1

ap,qx
p+1yq


 ,

dy

dt
= −i


y −

n−1∑
p+q=1

bq,pxqyp+1


 , (3)

here and in similar systems below p � −1, q � 0. We denote the vector of coefficients of
system (3) by (A,B), that is, (A,B) = (a1,0, a0,1, . . . , a−1,n, b1,0, b0,1, . . . , bn,−1). We use
the same notation also for the vector of coefficients of system (5).

The linearizability problem for system (3) is the problem to decide whether the system
can be transformed to the linear system ż1 = iz1, ż2 = −iz2 by means of a formal change of
the phase variables

z1 = x +
∞∑

m+j=2

u
(1)
m−1,j (A,B)xmyj ,

(4)

z2 = y +
∞∑

m+j=2

u
(2)
m,j−1(A,B)xmyj .

If such transformation exists we say that the system is linearizable (it is also said that there is
a linearizable centre at the origin). It is well known (see, e.g., [3]) that if there exist formal
series (4) linearizing (3) then the series converge in a neighbourhood of the origin.
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After the change of time idt = dτ and then rewriting t instead of τ we obtain from system
(3) the system

dx

dt
= x −

n−1∑
p+q=1

ap,qx
p+1yq = x + P(x, y) = P̃ (x, y),

(5)
dy

dt
= −y +

n−1∑
p+q=1

bq,pxqyp+1 = −y + Q(x, y) = Q̃(x, y).

It is clear that the conditions for linearizability of system (5), that is, the condition under
which, by (4), the system can be transformed to the linear system

ż1 = z1, ż2 = −z2, (6)

are the same as the conditions for linearizability of system (3), so we will study system (5). The
problem of linearizability for systems (5) is a generalization of the problem of linearizability
(isochronicity) for polynomial systems (1) in the sense that if we know all linearizable systems
within a given family (5) then going back to (3) and then to the real coordinates u, v we obtain
all linearizable systems in the corresponding real family (1). However, there are linearizable
systems (3) which do not have a real ‘preimage’ (counterpart).

The linearizability problem for system (5) with both P and Q being homogeneous
polynomials of degrees 2 and 3 has been solved in [9]; some particular families of linearizable
cubic systems were presented in [21]. Of course, we have mentioned here only very few
contributions to the problem of isochronicity and linearizability. For more references, the
interested reader can consult, e.g., [2, 5, 6, 8, 22].

In this paper, we present the conditions for linearizability of system (5) with P and
Q being homogeneous polynomials of the fifth degree (system (21)). For this system, the
nonzero linearizability quantities i2, i4, i6, . . . (see definition in section 2) are polynomials
of degrees 1, 2, 3, . . . , respectively, whereas for the case of system (5) where P and Q
are homogeneous polynomials of the fourth degree the nonzero quantities i3, i6, i9, . . . are
polynomials of degrees 2, 4, 6, . . . , respectively. Thus, in the quartic case we have to deal
with polynomials of higher degrees than in the quintic one and, therefore, it is much easier to
find the irreducible decomposition of the variety5 defined by the linearizability quantities in
the case when P and Q are homogeneous quintic nonlinearities than in the case when they are
homogeneous quartic nonlinearities. In the last section, we compare the obtained results with
those of [5].

2. Preliminaries

In this section, we briefly describe a general approach to studying the linearizability problem
for polynomial systems (5).

The first step is the calculation of the so-called linearizability quantities, which are
polynomials of the coefficients ak,p, bp,k of system (5). Taking derivatives with respect to t in
both parts of each of the equalities in (4), we obtain

ż1 = ẋ +
∞∑

m+j=2

u
(1)
m−1,j (mxm−1yj ẋ + jxmyj−1ẏ),

5 We recall that the variety of a given polynomial ideal F = 〈f1, . . . , fs〉 is the set of common zeros of polynomials
f1, . . . , fs ; it is denoted by V (F ).
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ż2 = ẏ +
∞∑

m+j=2

u
(2)
m,j−1(mxm−1yj ẋ + jxmyj−1ẏ).

Equating coefficients of the terms xq1+1yq2 , xq1yq2+1, we obtain the recurrence formulae

(q1 − q2)u
(1)
q1,q2

=
q1+q2−1∑
s1+s2=0

[
(s1 + 1)u(1)

s1,s2
aq1−s1,q2−s2 − s2u

(1)
s1,s2

bq1−s1,q2−s2

]
, (7)

(q1 − q2)u
(2)
q1,q2

=
q1+q2−1∑
s1+s2=0

[
s1u

(2)
s1,s2

aq1−s1,q2−s2 − (s2 + 1)u(2)
s1,s2

bq1−s1,q2−s2

]
, (8)

where s1, s2 � −1, q1, q2 � −1, q1 + q2 � 0, u
(1)
1,−1 = u

(1)
−1,1 = 0, u

(2)
1,−1 = u

(2)
−1,1 = 0, u

(1)
0,0 =

u
(2)
0,0 = 1, and we set aq,m = bm,q = 0, if q + m < 1.

Thus, we see that the coefficients u(1)
q1,q2

, u(2)
q1,q2

of transformation (4) can be computed step
by step using formulae (7) and (8). In the case q1 = q2 = q the coefficients u(1)

q,q , u
(2)
q,q can

be chosen arbitrary (we set u(1)
q,q = u(2)

q,q = 0). The system is linearizable if and only if the
quantities on the right-hand side of (7) and (8) are equal to zero for all q1 = q2 = q ∈ N. As
a matter of definition, in the case q1 = q2 = q we denote the polynomials on the right-hand
side of (7) by iq and on the right-hand side of (8) by −jq and call them qth linearizability
quantities. We see that system (5) with the given coefficients (A,B) is linearizable if and only
if ik(A,B) = jk(A,B) = 0 for all k ∈ N.

In the space of the parameters of a given family of systems (5) the set of all linearizable
systems is an affine variety V of the ideal 〈i1, j1, i2, j2, . . .〉. Due to the Hilbert basis theorem
there exists N ∈ N such that V is equal to the variety of the ideal 〈i1, j1, . . . iN , jN 〉; however,
the theorem does not give any idea how to find the number N. A practical way to compute V

is to take N0 equal to a half of the number of parameters of the system, to compute the ideal
IN0 = 〈i1, j1, . . . , iN0 , jN0〉 and to find the minimal associate primes of the ideal IN0 , which
define the irreducible decomposition of the variety VN0 of the ideal IN0 , VN0 = V1 ∪ · · · ∪ Vs .
Then for each component Vk (k = 1, . . . , s) one tries to find linearizing substitutions for all
systems from the component (or at least to prove the existence of such substitutions). If for
all systems from VN0 linearizations exist then V = VN0 and the problem is solved.

The most powerful method to find a linearizing substitution is the so-called Darboux
linearization. By definition, a Darboux linearization [17] of system (5) is a change of variables

z1 = H1(x, y), z2 = H2(x, y), (9)

which transforms the system to the linear system (6), and such that at least one of the functions
H1,H2 is of the form H = f

α1
1 · · · f αk

k (αj ’s are complex numbers), where fi(x, y)’s are some
functions (called Darboux functions) satisfying the equation

∂fi

∂x
P̃ +

∂fi

∂y
Q̃ = Kifi,

with Ki’s being some polynomials. The polynomial Ki(x, y) is called the cofactor of fi(x, y).
A simple computation shows that if there are Darboux functions f1, f2, . . . , fk with the
cofactors K1,K2, . . . , Kk satisfying

k∑
i=1

αiKi = 0, (10)
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then H = f
α1
1 · · · f αk

k is a first integral of system (5), and if

k∑
i=1

αiKi + P̃ ′
x + Q̃′

y = 0, (11)

then the equation admits the integrating factor µ = f
α1
1 · · · f αk

k .

Similarly, one can construct Darboux linearizations. In particular, assume that system (5)
has a first integral of the form

�(x, y) = xy


1 +

∞∑
k+j=1

vk,j x
kyj


 (12)

and the Darboux functions f1, f2, . . . , fs, which are analytic functions, such that for all
m = 1, . . . , s, fm(0, 0) = 1. Let K1, . . . , Ks be the corresponding cofactors. In such a case,
if

(1 − c)
P

x
− c

Q

y
+

s∑
j=1

αjKj = 1 (13)

then the first equation of (5) is linearized by the substitution

z1 = x1−cy−c�cf
α1
1 f

α2
2 ṡf αs

s , (14)

and if

−c
P

x
+ (1 − c)

Q

y
+

s∑
j=1

αjKj = −1 (15)

then the second equation of (5) is linearizable by the substitution

z2 = x−cy1−c�cf
α1
1 f

α2
2 · · · f αs

s . (16)

For most cases studied in this work it is possible to find Darboux linearizations of the
form (14) or (16) with c = 0; only for case 5 of theorem 1, we have used the integral �(x, y)

in order to obtain the linearization of the form (14) and (16) with c �= 0.
If system (5) is such that only one of conditions (14), (16) is satisfied, let us say (16), but

it has a first integral �(x, y) of the form

�(x, y) = xy +
∞∑

l+j=3

vl,j x
lyj , (17)

which we call the Lyapunov first integral, then (5) is linearizable by the change

z1 = �(x, y)/H2(x, y), z2 = H2(x, y). (18)

Sometimes the following observation is helpful. Assuming that (5) has a first integral
(17), we can write the system in the form

ẋ = r�y, ẏ = −r�x (19)

for some analytic function r(x, y) with r(0, 0) = 1. Eliminating � in (19) gives us

ṙ = div(ẋ, ẏ)r, (20)

which means that r is a Darboux function with the cofactor div(ẋ, ẏ).
More details on the Darboux method of integration and linearization can be found in

[8, 9, 17].



5910 V G Romanovski et al

3. The conditions for linearizability

In this section, we will find the conditions for linearizability of system (5), where P and Q are
homogeneous polynomials of degree 5, that is,

ẋ = x − a1x
5 − a2x

4y − a3x
3y2 − a4x

2y3 − a5xy4 − a6y
5,

ẏ = −y + b6x
5 + b5x

4y + b4x
3y2 + b3x

2y3 + b2xy4 + b1y
5.

(21)

Note that for (21) i2 = a3, j2 = b3; therefore if |a3| + |b3| �= 0, then the system is not
linearizable, so from now on we assume that in (21) a3 = b3 = 0.

For system (21) (with a3 = b3 = 0) using a straightforward modification of Mathematica
code from [21, appendix], we have computed the first six different from zero linearizability
quantities i4, j4, i6, j6, . . . , i14, j14 (the quantities of system (21) with sub-indexes difference
from 2k are equal to zero). The polynomials are too long, so we do not present them here;
however, the interested reader can easily compute them by using any available computer
algebra systems by algorithms from [9] or [21], for instance. To find the necessary conditions
for linearizability of system (21) it is sufficient to find the irreducible decomposition of the
variety of the ideal I = 〈i4, j4, . . . , i14, j14〉. To do so, we used the routine minAssChar [18] of
Singular [14] which finds the minimal associate primes of a polynomial ideal by means of the
characteristic sets method [23]. Note that if for system (21) a6 �= 0, b6 �= 0, then by a linear
transformation we can set in (21) a6 = b6 = 1. Since the ideal is huge and the calculations
are tremendous, in order to be able to carry out them using the above observation we split our
system (21) into three systems considering separately the cases:

(α) a6 = b6 = 0, (β) a6 = 1, b6 = 0, (γ ) a6 = b6 = 1.

For cases (β) and (γ ) at our computational facilities the decomposition is still impossible
in the rational arithmetic; however, we have succeeded to find it by computing in the field
of characteristic 32 003 and then, using the reconstruction to rational arithmetic6, we have
obtained the necessary conditions for linearizability presented in theorems 1 and 3. In the
proofs of the theorems, we show that these conditions are also the sufficient conditions for
linearizability of the corresponding systems.

To perform the rational reconstruction, that is, to reconstruct p/s ∈ Q given its image
t ∈ Z/m, we use the following algorithm [24, 25] (in the algorithm �·	 stands for the floor
function).

Algorithm RATCONVERT(c,m)

(1) u = (u1, u2, u3) := (1, 0,m), v = (v1, v2, v3) := (0, 1, c)

(2) while
√

m/2 � v3 do {q := �u3/v3	, r := u − qv, u := v, v := r}
(3) if |v2| �

√
m/2 then error()

(4) return v3, v2

Given an integer number c and a natural number m, the algorithm produces integers v3

and v2 such that v3/v2 ≡ c mod m and |v2|, |v3| �
√

m/2. Such a number v3/v2 need not
exist. If it is the case, then the algorithm returns ‘error()’.

We mention one more algorithm called the radical membership test (see, e.g., [10]), which
was helpful for our calculations. Namely, given a polynomial f ∈ C[x1, . . . , xn] and an ideal
J = 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn], f vanishes on the variety V (J ) of the ideal J if and only
if the reduced Groebner basis of 〈f1, . . . , fs, 1 − wf 〉 ⊂ C[w, x1, . . . , xn] is {1}.
6 To our knowledge modular arithmetic for the first time was used for computing normal forms of ODEs and for
studies of the centre problem in [11].
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Note that if we apply to the conditions of theorem 3 (which gives the conditions for the
case (β)) the involution

ai ↔ bi, (22)

then we obtain the conditions for linearizability of system (21) with b6 = 1, a6 = 0. Thus,
theorems 1–3 provide the complete solution to the problem of linearizability for system (21).

Theorem 1. System (21) with a6 = b6 = 1 is linearizable if and only if a3 = b3 = 0 and one
of the following conditions holds:

(1) 12b1 −5 = 6b2 +7 = 6b4 −1 = 12b5 +5 = 12a5 +5 = 6a4 −1 = 6a2 +7 = 12a1 −5 = 0,

(2) 12b1 +5 = 6b2 +7 = 6b4 −1 = 12b5 −5 = 12a5 −5 = 6a4 −1 = 6a2 +7 = 12a1 +5 = 0,

(3) 30b2 − 84b1 − 35 = 42b4 − 6b2 + 7 = 14b5 − 5b2 = 84a5 + 30b2 − 35 = 7a4 + b2 =
6a2 + 6b2 − 7 = 14a1 + 5b2 = 144b2

1 + 60b1 + 25 = 0,

(4) 30b2 + 84b1 − 35 = 42b4 − 6b2 + 7 = 14b5 + 5b2 = 84a5 − 30b2 + 35 = 7a4 + b2 =
6a2 + 6b2 − 7 = 14a1 − 5b2 = 144b2

1 − 60b1 + 25 = 0,

(5) 12b1−17 = 2b2−5 = 6b4+5 = 4b5−5 = 4a5−5 = 6a4+5 = 2a2−5 = 12a1−17 = 0,

(6) 12b1 +17 = 2b2 −5 = 6b4 +5 = 4b5 +5 = 4a5 +5 = 6a4 +5 = 2a2 −5 = 12a1 +17 = 0,

(7) 34b2 −60b1 +85 = 6b4 −2b2 −5 = 2b5 +b2 = 4a5 −2b2 −5 = 3a4 +b2 = 2a2 +2b2 +5 =
30a1 + 17b2 = 144b2

1 − 204b1 + 289 = 0,

(8) 34b2 +60b1 +85 = 6b4 −2b2 −5 = 2b5 −b2 = 4a5 +2b2 +5 = 3a4 +b2 = 2a2 +2b2 +5 =
30a1 − 17b2 = 144b2

1 + 204b1 + 289 = 0.

Proof 1. (i) To obtain the necessary condition for linearizability of system (21) with
a6 = b6 = 1 we look for the irreducible decomposition of the variety V (I) of the ideal
I = 〈i4, j4, . . . , i14, j14, a6 − 1, b6 − 1〉. To perform the decomposition we need to find the
minimal associate primes of I. It can be done using, for instance, the routines minAssChar
or minAssGT Z of Singular (we found that minAssChar is more efficient and used it for
our calculations). Theoretically, both routines should return the minimal associate primes of
a given polynomial ideal; however, the involved calculations are usually very heavy, so in
practice the decomposition over Q is possible only for relatively simple polynomial ideals. In
our case, we failed to perform the decomposition of I at the available computational facilities
working over the field of rational numbers, but we have succeeded to find the minimal
associate primes of I computing over the field of characteristic m = 32 003. It should be
noted that a result obtained using modular calculations not necessarily can be reconstructed
to the true result (one reason for this is that, as it is indicated above, the reconstruction does
not always succeed; another reason is that even an univariant polynomial irreducible over
Q can be factorizable over Z/m). In our case, the minAssChar returns the list of eight
ideals. Six of them after the reconstruction using RATCONVERT give the varieties 1–6 of
the statement of the theorem. However, the reconstruction of the remaining two ideals gives
the ideals different from 7 and 8. Namely, one of these two ideals returning by minAssChar
is G̃ = 〈b2

1 + 13336b1 + 8225, b2 + 15062b1 − 15999, b4 − 5647b1, b5 + 7531b1 + 8002, a5 −
7531b1, a4 + 5647b1 + 5333, a2 − 15062b1, a1 + b1 + 13336〉. Applying RATCONVERT we
obtain from G̃ the ideal G = 〈

b2
1 + 17b1/12 − 15/214, b2 + 30b1/17 + 5/2, b4 + 10b1/17, a5 −

15b1/17, b5 + 15b1/17 + 5/4, a4 − 10b1/17 − 5/6, a2 − 30b1/17, a1 + b1 + 17/12
〉
. Simple

calculations show that not all polynomials of I vanish on the variety of V (G), that is, V (G) is
not a component of V (I). An empirical observation is that the simpler a polynomial returned
by minAssChar after modular calculations, the more are chances that the reconstruction yields
the true polynomial. Thus, to find the right component of V (I) we pick up from G the second,
the third and the fourth polynomials, add it to the ideal I and compute the decomposition of
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the obtained ideal with minAssChar over the field of rational numbers (m = 0). Now, the
computation yields component 8 of the theorem (similarly we found component 7). Another
possible way to get true components is recomputing with different characteristics. For example,
the computation with m = 139 907 gives the correct expression for component 8. One more
empirical observation is that, in order to speed up the calculations it is useful first to compute
a Groebner basis of the ideal with respect to the degree reverse lexicographic term order, when
minAssGT Z is applied, and with respect to the lexicographic term order, when decomposing
with minAssChar.

Let J1, J2, . . . , J8 be the ideals defining the components 1, 2, . . . , 8, respectively. It is
easy to check (using the radical membership test or just direct substitutions) that if any of
conditions 1–8 is fulfilled then all polynomials i4, j4, . . . , i14, j14, a6 − 1, b6 − 1 vanish, that
is VJ := ∪8

s=1V (Js) ⊆ V (I). We need now to check the opposite inclusion

V (I) ⊆ VJ . (23)

Since ∪8
s=1V (Js) = V

(∩8
s=1 Js

)
, to verify (23) it is sufficient to show using the radical

membership test that any polynomial from Jint = ∩8
s=1Js vanishes on the variety of V (I). We

computed Jint with the routine intersect of Singular. Then we have found that all Groebner
bases required in the radical membership test are {1}, but with Singular we were able to
complete the computations only over the field of characteristic 32 003, so we still could not be
sure whether (23) holds for the field of rational numbers. Fortunately, recently, a very efficient
package for Groebner bases computation (called FGb) has been developed by Faugère [12].
With this package we have performed the computations over Q and have checked that the
radical membership test returns {1} also over this field. Therefore, (23) holds over Q, yielding
that equations (1)–(8) of the statement of the theorem define the irreducible decomposition
of the variety of the ideal I and, thus, they give the necessary conditions for linearizability of
system (21).

(ii) We now prove that the conditions of the theorem are also the sufficient conditions for
the linearizability, that is, if the coefficients of system (21) satisfy any of conditions (1)–(8) of
the theorem then the system is linearizable.

It is shown in the proof of lemma 2 in [20] that the systems corresponding to the first four
cases can be transformed to

ẋ = x − 5
12x5 − 7

6x4y + 1
6x2y3 + 5

12xy4 + y5,
(24)

ẏ = −y − x5 − 5
12x4y − 1

6x3y2 + 7
6xy4 + 5

12y5

and the remaining ones to

ẋ = x − 17
12x5 + 5

2x4y − 5
6x2y3 − 5

4xy4 + y5,
(25)

ẏ = −y − x5 + 5
4x4y + 5

6x3y2 − 5
2xy4 + 17

12y5.

The real system corresponding to (24) is system g of [5]:

u̇ = −v +
4u2v

3
(9u2 − 8v2), v̇ = u +

4uv2

3
(−3u2 + 4v2). (26)

It is known (see, e.g., [1, 15]) that the centre at the origin of (26) is isochronous if there is a
transversal commuting system. Thus, to prove that (26) is linearizable we show that it has a
transversal commuting system of the form

u̇ = u(1 + 16u2v2)H(u, v), v̇ = v
(
1 − 16

3 u2v2
)
H(u, v), (27)
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where

H(u, v) = 1 +
∞∑

k=1

f2k(v)u2k, f2(v) = −16

3
v2, f4(v) = 64

3
v4 − 20

3

and f2k(v) are some polynomials. Indeed, it is easy to check that (27) is a commuting system
for (26) if and only if

(3v − 36u4v + 32u2v3)H ′
u + (−3u + 12u3v2 − 16uv4)H ′

v + (48u3v + 32uv3)H = 0.

It yields the recurrence relation for the polynomials f2k:

6(k + 1)vf2k+2(v) + 32(2k + 1)v3f2k(v) − (16v4 + 3)f ′
2k(v)

+ 24(5 − 3k)vf2k−2(v) + 12v2f ′
2k−2(v) = 0. (28)

Noting that f2k defined by (28) are polynomials of v2 we see that for all k > 1f2k+2 can be
computed recursively using (28). Therefore, system (26) is isochronous and, hence, system
(24) is linearizable7.

For system (25) there are three invariant curves: �1 = x − 1
6 (x − y)5, �2 = y + 1

6 (x −
y)5, �3 = 1 − 5

12 (x − y)4, which yield the Darboux linearization z1 = �1�
−5/4
3 , z2 = �2�

−5/4
3 .

Another linearizing substitution for the corresponding real system

u̇ = −v + 1
3 (−100u2 + 16v2), v̇ = u − 20

3 uv4

is obtained in [5]. �

Theorem 2. System (21) with a6 = b6 = 0 is linearizable if and only if a3 = b3 = 0 and one
of the following conditions holds:

(1) b1 = b4 = a5 = a4 = a2 = 0,

(2) b1 = b2 = a5 = a4 = 0,
(3) b2 = b4 = b5 = a4 = a1 = 0,
(4) b2 = b5 = 3a5 − b1 = a4 = 3a2 − 5b4 = a1 = 0,
(5) b4 = a5 − b1 = a4 = a1 − b5 = a2b2 − 4b5b1 = 0,

(6) b1 = b4 = a5 = 5a4 − 3b2 = a2 = a1 − 3b5 = 0,
(7) b5 = a5 = 3a4 − b2 = a2 − 3b4 = a1a

2
4 + b2

4b1 = 0,
(8) b4 = b5 = a2 = a1 = 0,
(9) a5 − 3b1 = 4b3

2 + 729b4b
2
1 = 4b4b2 + 3b5b1 = b5b

2
2 − 243b2

4b1 = 324b3
4 + b2

5b2 =
9a4 + b2 = a2 + 9b4 = 3a1 − b5 = 0,

(10) a5 + b1 = a4 + b2 = a2 + b4 = a1 + b5 = 0.

Proof. To obtain the necessary conditions for linearizability presented above with minAssChar,
we found the minimal associate primes of I = 〈i4, j4, . . . , i14, j14, a6, b6〉 (for this case, we
were able to complete all the calculations with Singular over the field of rational numbers).
We now prove that they are the sufficient conditions for linearizability. Linearizability of
systems 2, 8 and 9 has been proven in [5, 20]. Case 3 is dual to 1 and case 6 is dual to 4 under
the involution (22). We consider the remaining cases.

(1) The corresponding system

ẋ = x − a1x
5, ẏ = −y + b5x

4y + b2xy4 (29)

has three invariant curves: l1 = 1 − a1x
4, l2 = x, l3 = y. Using (13) (with c = 0),

we find that the first equation is linearizable by the change z1 = x�
−1/4
1 . In order to

7 It was an open problem stated in [5] to prove that system (26) is isochronous. Another proof of isochronicity of
this system was obtained by Colin Christopher [7].
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obtain the linearization of the second equation we look for the first integral. The Darboux
integrating factor obtained according to (11) is µ = x−4y−4�

(a1+3b5)/4a1
1 . Using µ by

standard computations we find the first integral of (29)

H(x, y) = 1

3
x−3y−3�

3(a1−b5)

4a1
1 − 1

2
b2x

−2
2F1

(
−1

2
,
a1 + 3b5

4a1
; 1

2
; a1x

4

)
,

where 2F1 is the Gauss hypergeometric function. Then �(x, y) = (3H(x, y))−1/3 is the
Lyapunov first integral of (29) yielding the linearization of the second equation of (29) in
the form

z2 = x−1�
1/4
1 �(x, y).

The linearizations are defined for a1 �= 0. We failed to find an explicit linearization for the
case a1 = 0; however we can prove its existence. To see this, one can check that in this case
there is a first integral of the form �(x, y) = ∑∞

k=1 fk(y)xk . Thus, since the first equation
of the system is already linear, �(x, y)/x is a linearization of the second equation. Another
way to prove that the linearization exists is using the following geometrical argument.
The set of all linearizable systems is the zero set of a polynomial system; therefore it is
closed in the Zariski topology. In our case, we have b1 = b4 = a5 = a4 = a2 = 0 but
a1 �= 0. That is, we have the set V (〈b1, b4, a5, a4, a2〉)\V (〈a1〉). Obviously, the Zariski
closure of this set is again V (〈b1, b4, a5, a4, a2〉), that is, a linearization must exist also
for the case a1 = 0.

(2) In this case, the corresponding system is linearizable by the transformation

z1 = x�
1/12
1 �

−1/2
2 , z2 = y�

−1/4
1 �

1/2
2 ,

where �1 = 1 − 2b4x
3y − 3a5y

4 and �2 = 1 − 2b4x
3y.

(3) We assume that b2 �= 0 (otherwise, we have a subcase of 2 or 3). Then the system has the
form

ẋ = x − a1x
5 − 4a1b1

b2
x4y − b1xy4, ẏ = −y + a1x

4y + b2xy4 + b1y
5. (30)

There are two invariant curves:

�1 = 1 − a1x
4 − 4a1b1

b2
x3y − 4a1b

2
1

b2
2

x2y2, �2 = 1 − b2
2

4b1
x2y2 − b2xy3 − b1y

4,

with the cofactors k1 = −4a1x
4 − 8a1b1

b2
x3y, k2 = 2b2xy3 + 4b1y

4, respectively.
Using (11) we find the integrating factor µ(x, y) = (xy)−2(�1�2)

−1. Let z(x, y) =
µ(−y + a1x

4y + b2xy4 + b1y
5), w(x, y) = µ

(
x − a1x

5 − 4a1b1
b2

x4y − b1xy4
)
. Then there

exists a first integral of the form
∫

z(x, y) dx + φ(y). Since µ is an integrating factor, we
obtain

φ′(y) = − ∂

∂y

∫
z(x, y) dx − w(x, y).

Calculations give φ′(y) = −∫
∂
∂y

z(x, y) dx − w(x, y) = 0; hence �̃ = ∫
z(x, y) dx is a

first integral of (30). Taking the series expansion it is easy to see that �(x, y) = 1/�̃(x, y)

is a Lyapunov first integral of the form (12).
Using the integral, we can construct the linearizations (14) and (16). Namely, the

system is linearized by the substitution

z1 = x1/2y−1/2�1/2�
−1/4
1 �

1/4
2 , z2 = x−1/2y1/2�1/2�

1/4
1 �

−1/4
2 .
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(4) We assume a4 �= 0; otherwise, it was proved in lemma 1 in [20] that the corresponding
system is linearizable. Then the system is of the form

ẋ = x +
b1b

2
4

a2
4

x5 − 3b4x
4y − a4x

2y3, ẏ = −y + b4x
3y2 + 3a4xy4 + b1y

5. (31)

It has the invariant curves �1 = x, �2 = y, �3 = 1 + b1b
2
4

a2
4

x4 − 4b4x
3y − 4a4xy3 − b1y

4.

Let g(x, y) = �3 − 1. Performing the change of variables

X = x�
−1/8
3 , Y = y�

−1/8
3 (32)

we obtain from (31) the system

Ẋ = X (1 + g(x, y)/2) , Ẏ = −Y (1 + g(x, y)/2) . (33)

Substituting x = X�
1/8
3 and y = Y�

1/8
3 into g(x, y), we find g(x, y) = g(X, Y )

√
�3(x, y),

yielding g(X, Y )2 = g(x, y)2/(1 + g(x, y)).
Let us show that there exists a function m(X, Y ) such that dm(X, Y )/dt = g(x, y).

To this end, we need to solve the equation

X
∂m

∂X
− Y

∂m

∂Y
= g(x, y)

(1 + g(x, y)/2)
= g(X, Y )√

1 + g(X, Y )2/4
. (34)

Note that the right-hand side can be expanded in odd powers of g(X, Y ). From the form
of g(X, Y ) (no X2Y 2 term) we know that an odd power of g(X, Y ) has no term of the
form (XY )n which means that we can solve (34) for m(X, Y ) with m(0, 0) = 0. Then,
the substitution x1 = X e− 1

2 m(X,Y ), y1 = Y e
1
2 m(X,Y ) (where X and Y are given by (32))

provides a linearization of system (31).8

(5) The Darboux linearization for this case is given by z1 = x�
−1/4
1 , z2 = y�

−1/4
1 , where

�1 = 1 + b5x
4 + 2b4x

3y − 2b2xy3 − b1y
4. �

To compute the conditions presented in the statement of the following theorem we used
the way described in (i) of the proof of theorem 1. In the proof of the theorem, we prove that
under these conditions the corresponding systems indeed are linearizable.

Theorem 3. System (21) with a6 = 1, b6 = 0 is linearizable if and only if a3 = b3 = 0 and
one of the following conditions holds:

(1) b1 = b2 = b5 = a5 = a4 = a2 + 5b4 = a1 = 0,
(2) b1 = b2 = b4 = a5 = a4 = a2 = a1 + 5b5 = 0,
(3) b4 = b5 = a2 = a1 = 0,
(4) b1 = b5 = a5 = 3a4 − b2 = a2 − 3b4 = a1 = 0,
(5) a2 + 3b4 = 13a5 − 15b1 = 9a4 + b2 = 3a1 − b5 = 24b2

1 + 169a4 = 6b4b1 + 13a1 =
2b2

2 + 27b4 = 0,
(6) b1 = b2 = b4 = a5 = a4 = a2 = 3a1 + 5b5 = 0.

Proof. (1) Observing that the corresponding system has the invariant curves �1 =
xy − 1

6y6, �2 = 1 + b4
40 (320x3y − 240x2y6 + 48xy11 − 3y16), we find the Darboux first

integral �(x, y) = �1�
−3/8
2 and the linearization z1 = �(x, y)/z2, z2 = y�

−1/16
2 .

(2) For this case the invariant curves

�1 = xy − 1

6
y6, �2 = 1 +

b5

112
(560x4 − 1120x3y5 + 420x2y10 − 60xy15 + 3y20)

8 Originally the authors were able to prove the linearizability of system (31) only for the case when the system is
real. The presented way of linearization was suggested by an anonymous referee of the paper.
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allow us to construct the Darboux first integral �(x, y) = �1�
−3/10
2 and the Darboux

linearization z1 = �(x, y)/z2, z2 = y�
−1/20
2 .

(3) The system is written as

ẋ = x − a4x
2y3 − a5xy4 − y5, ẏ = −y + b2xy4 + b1y

5. (35)

Though we are unable to find an explicit linearizing transformation for (35), we can prove its
existence. To this end, we proceed in the spirit of [13]. Namely, we look for a linearizing
substitution for the second equation of the system in the form

z2 =
∞∑

k=1

fk(x)yk, (36)

where fk(x) (k = 2, 3, . . .) are some polynomials of degree k − 1 and f1(x) ≡ 1. Formula
(36) provides the linearization if there are fk(x)’s satisfying the differential equation

xf ′
k(x) + (1 − k)fk(x) + (k − 3)b2xfk−3(x) − a4x

2f ′
k−3(x)

+ (k − 4)b1fk−4(x) − a5xf
′
k−4(x) − f ′

k−5(x) = 0, (37)

where fn(x) ≡ 0 when n � 0. A straightforward computation gives polynomials f2, . . . , f5.
Assume that for k = 6, . . . , m there are polynomials fk satisfying (37) and such that
deg(fk) = k − 1. Then, for k = m + 1, solving the linear differential equation (37), we
obtain

fm+1(x) = xm

(
C +

∫
x−m−1hm−2 dx

)
= Cxm + h̃m−2(x).

Since hm−2 is a polynomial of degree m − 2, we see that deg fm+1 = m. Therefore (36) is a
linearization of the second equation of (35).

To prove that there is a linearization for the first equation of (35) it is sufficient to show
that a Lyapunov first integral of the system can be found in the form

�(x, y) =
∞∑

k=1

gk(x)yk,

where g1(x) = x, g2(x) = x2 and gk(x) are some polynomials of degree k. The polynomials
gk(x) should fulfil the linear differential equation

xg′
k(x) − kgk(x) + (k − 3)b2xgk−3(x) − a4x

2g′
k−3(x)

+ (k − 4)b1gk−4(x) − a5xg′
k−4(x) − g′

k−5(x) = 0. (38)

Similarly as above, we see that for all k = 1, 2, . . . there are polynomials gk(x) satisfying (38)
and such that deg(gk) is at most k. Therefore, the first equation of (35) can be linearized by
the change z1 = �(x, y)/z2.

(4) The corresponding system is

ẋ = x − 3b4x
4y − a4x

2y3 − y5, ẏ = −y + b4x
3y2 + 3a4xy4. (39)

Similarly, as for system (35) it is easy to check that the second equation of (39) can be
linearized by the change

z2 =
∞∑

k=1

hk(x)yk,

where hk(x) is some polynomial of degree at most 3(k − 1), h1(x) ≡ 1 and the first equation
of (39) can be linearized by the change z1 = �(x, y)/z2, where

�(x, y) =
∞∑

k=1

gk(x)yk
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with gk(x) being some polynomial of degree at most 3k − 2 and g1(x) = x, g2(x) = b4x
4.

(5) In this case, we can write the system as

ẋ = x − 256a5
5

9375
x5 − 128a4

5

625
x4y +

8a2
5

75
x2y3 − a5xy4 − y5,

ẏ = −y +
256a5

5

3125
x4y − 128a4

5

1875
x3y2 +

24a2
5

25
xy4 +

13a5

15
y5.

There are three invariant curves:

�1 = 1 − 256a4
5

1875
x3y − 64a3

5

125
x2y2 − 16a2

5

25
xy3 − 4a5

15
y4,

�2 = 1 − 256a5
5

9375
x4 − 256a4

5

1875
x3y − 32a3

5

125
x2y2 − 16a2

5

75
xy3 − a5

15
y4,

�3 = x − 128a4
5

1875
x4y − 128a3

5

375
x3y2 − 16a2

5

25
x2y3 − 8a5

15
xy4 − 1

6
y5

yielding the linearization z1 = �3�
−1
1 �

−1/4
2 , z2 = y�−1

1 �
3/4
2 .

(6) The corresponding system is

ẋ = x +
5b5

3
x5 − y5, ẏ = −y + b5x

4y. (40)

First, we prove by induction that the system admits a Lyapunov first integral of the form

�(x, y) =
∞∑

k=0

fk(x)y5k+1,

where fk(x) = h3k+1(x)(3 + 5b5x
4)−(2k+2/5) with h1(x) = 32/5x and h3k+1(x) being some

polynomials of degree at most 3k + 1. The functions fk(x) should satisfy the differential
equation (

x + 5
3b5x

5
)
f ′

k(x) + (5k + 1)(b5x
4 − 1)fk(x) − f ′

k−1(x) = 0. (41)

Assume that for k = 1, . . . , m equation (41) has solutions of the form (41). When k = m + 1
by solving (41) we obtain

fm+1(x) = x5m+6

(3 + 5b5x4)2m+12/5
·
∫

(3 + 5b5x
4)2m+7/5

x5m+7
(fm(x))′ dx

= x5m+6

(3 + 5b5x4)2m+12/5
·
∫

(3 + 5b5x
4)2m+7/5

x5m+7

h̃3m+4(x)

(3 + 5b5x4)2m+7/5
dx

= h3(m+1)+1

(3 + 5b5x4)2(m+1)+2/5
,

where h̃3m+4(x) stands for a polynomial of degree at most 3m + 4.
We obtain a linearization using (20). Let r = P(x, y)/� ′

y(x, y). Then the system (40) is
linearized by the change z1 = �(x, y)/z2, z2 = yr−3/28. �

4. Final remarks

The isochronicity problem for the real polynomial system in the form of the linear oscillator
u̇ = −v, v̇ = u perturbed by the fifth degree homogeneous polynomials, that is, for the system

u̇ = −v + α1u
5 + α2u

4v + α3u
3v2 + α4u

2v3 + α5uv4 + α6v
5,

v̇ = u + β1u
5 + β2u

4v + β3u
3v2 + β4u

2v3 + β5uv4 + β6v
5,

(42)
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where u, v, αi, βi ∈ R, has been studied in [5]. The authors of [5] have found all time-
reversible isochronous systems (42) and pointed out two more isochronous systems in family
(42).

From theorems 1 and 2, we have derived the necessary and sufficient conditions for
isochronicity of system (42). Comparing our conditions for isochronicity of system (42) with
those obtained in [5] we have found only one system not appearing in [5]. Namely, these are
systems from condition 10 of theorem 3 satisfying the condition Im(a1a

2
4) �= 0 (such systems

are not time reversible).
To summarize, we have obtained the necessary and sufficient conditions for linearizability

of system (21). By linear substitutions almost all (the exception is the above-mentioned
systems from condition 10 of theorem 3) isochronous systems (42) can be transformed to one
of systems studied in [5]. A somewhat surprising result of our study is that most cases of
isochronicity of system (42) occur in time-reversible systems.
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[5] Chavarriga J, Giné J and Garcı́a I A 2000 J. Comput. Appl. Math. 126 351–68
[6] Chavarriga J and Sabatini M 1999 Qual. Theory Dyn. Syst. 1 1–70
[7] Christopher C 2004 E-mail correspondence
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